MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

IB. Tech– I Sem (MR20-2020-21 Admitted Students) I Mid Examination Subjective Question Bank

Name of the Subject: Engineering Physics Branches: ME/CE/Min. E

Bloom's **Questions** Q.No. CO Taxonomy Level **Module I** Derive the equation of motion for a simple harmonic oscillator and Understanding 1. 1 obtain its solution? OR 2. Deduce the expression for the total energy of a simple harmonic Understanding 1 oscillator. Show that the total energy remains independent of time and displacement. A particle executes simple harmonic motion which is given by the 3. Applying 1 equation $x = 0.5 \cos(10\pi t + \pi/3)$. Where x is the displacement at time t. Assuming that all physical quantities involved in it are in SI units. Find (i) the amplitude (ii) the frequency (iii) the initial phase and (iv) the displacement at time t = 1 sec. OR 4. A massless spring of spring constant 10 N/m is suspended from a rigid Applying 1 support and carries a mass of 0.1 Kg at its lower end. The system is subjected to a resistive force $-R_mv$, where R_m is a constant and v is the velocity. It is observed that the system performs damped oscillatory motion and its energy decays to 1/e of its initial value in 50 Sec. What is the Q value of the oscillator? 5. Form the equation of damped harmonic motion and obtain its solution. Applying 1 OR Discuss the case of the light damped (underdamped) condition by 6. Applying 1 using the solution of the damped harmonic oscillator. 7. Investigate the conditions of heavy damping and critical damping by Applying 1 using the solution of the damped harmonic oscillator. OR Obtain the expression for energy decay in a damped mechanical 8. Applying 1 harmonic oscillator.

Code: A0B12

	Module II		
1.	Derive Sabien's formula for reverberation time	Applying	2
	OR		
2.	Discuss the basic requirements of an acoustically good hall	Applying	2
3.	Explain the various factors affecting architectural acoustics and their remedies	Understanding	2
	OR		
4.	Define the term coefficient of absorption and write short notes on it	Remembering	2
U	Explain the production of ultrasonic waves using piezoelectric effect	Understanding	2
	OR		
6.	Describe the production of ultrasonic waves by magnetostriction method	Understanding	2
7.	Describe different methods of detecting ultrasonic waves	Understanding	2
	OR	-	-
8.	Mention the properties of ultrasonic waves	Remembering	2
	Module III		
1.	With the help of suitable diagrams, explain the principle, construction and working of a Ruby laser	Understanding	3
	OR		
2.	Explain the construction and working of a He-Ne laser with the help of an energy level diagram.	Understanding	3
3.	Deduce the relation between spontaneous and stimulated emission probabilities A and B. Explain in what situation the value of A/B may be small enough for laser action.	Applying	3
	OR		•
4.	With the help of suitable diagrams, explain the principle, construction and working of a Semiconductor Laser	Understanding	3
	1	1	
5	Mention applications of Lasers in any field	Remembering	3
	OR		
6	Explain with a neat diagram i)absorption ii) spontaneous emission iii) stimulated emission	Understanding	3

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.TECH I YEAR I Sem (MR20-2020-21) Mid Examination I Objective Question Bank

Subject Name: Engineering Pl Subject Code: A0B12	hysics	B	canch: ME/CE/Min.	E
1. The vibrating systems are said a. Their amplitudes are e	d to be in resonance equal	if b. Their tempera	[tures are same]
c .Their frequencies are o	equal	d. They are in sau	ne phase	
2. In SHM the force is always d	irected towards		[]
a. Extreme Position	b. Equilibrium	Position c.	both d. None	
3. In Simple Harmonic Motion ((SHM), the accelera	tion is	[]
a.Directly proportional to	o the displacement f	from a central posi	tion	
b.Constant				
c.Inversely proportional	to the displacement	from the central p	osition	
d.Inversely proportional	to the square of disp	placement from th	e central position	
4. The impedance of electrical	oscillator is given by	y =	[]
a. $\sqrt{R^2 - \left[\frac{1}{\omega C} - \omega L\right]^2}$ b. $\sqrt{R^2 + \left[\frac{1}{\omega C} - \omega L\right]}$	$R^2 = C. \sqrt{R^2 + \left[\frac{1}{\omega C} + \omega\right]}$	L $\Big]^2$ d. $\sqrt{R^2 - \Big[\frac{1}{\omega}\Big]}$	$\left[\frac{1}{C}+\omega L\right]^2$	
5. Example for the periodic mot	ion		[]
a.Motion of the pendulu	m in oil b.The	motion of the poin	ter in voltmeter or am	meter
c.Dead beat motion	d.The motion	of the Earth aroun	d the Sum	
6. Time period:			[]
a. Time taken for TEN os	scillations	b.Timeis taken fo	or ONE oscillation	
c.No. of oscillations in o	one sec.	d.None		
7. In Simple Harmonic Motion,	restoring force is al	ways directed	the equilibrium po	osition
			[]
a.Towards b.	Away from	c.Above	d.Below	_
8. The maximum displacement f	from the equilibrium	n position is called	[]
a. Frequency b.	Time Period	c.Amplitude	d.None of the ab	ove
9 force is involved in	free oscillations	. .	[]
a.Resisting b.	Restoring	c.Pseudo	d.None	-
10. The electrical impedance con	nsists of reactance to	erm	l]
a. $\left(\frac{1}{\omega C} - \omega L\right)$ b. $\left(\frac{1}{\omega C} + \omega L\right)$	$-\omega L$ c. $\left(\frac{k}{\omega}\right)$	d. $\left(\frac{\omega}{k}\right)$		
11. Restoring force is directly pr	roportional to the]]
a.Frequency b.	Amplitude	c.Time Period	d.Displacement	
12. Restoring force and displace	ement act in the	direction.	[]
a.Opposite b.	Same	c.Perpendicular	d.None	

13. Velocity of a particle exec	uting S.H.M is maxin	num at		[]
a.Equilibrium Position b.Extreme Position					
c.Intermediate Position	n	d.Cannot be p	redicted		
14. The energy of an oscillato	r is proportional to	of its amplitud	le.	[]
a.cube root	b.Square root	c.Square	d.None		
15. The frequency (f) of an os	cillator executing free	e oscillations is given b	у	[]
a. $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$	b. $\frac{1}{2\pi} \sqrt{\frac{m}{k}}$	$c.\frac{1}{\pi}\sqrt{\frac{m}{k}}$	d. $\frac{1}{2}\sqrt{\frac{m}{k}}$		
16. The Time period (T) of an	n oscillator executing	free oscillations is give	en by	[]
a. $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$	b. $2\pi \sqrt{\frac{m}{k}}$	c. $\frac{1}{\pi} \sqrt{\frac{m}{k}}$	d. $\frac{1}{2}\sqrt{\frac{m}{k}}$		
17. Potential energy of a partie	cle executing S.H.M i	s maximum at	position.	[]
a. Equilibrium Position	n	b. Extreme Position			
c. Intermediate Positio	n	d. Cannot be predicte	d		
18. Kinetic energy of a particl	e executing S.H.M is	maximum at	_ position	[]
a. Equilibrium Position	n	b. Extreme Position			
c. Intermediate Positio	n	d. Cannot be predicte	d		
19. The acceleration of a parti	cle executing S.H.M	is maximum at	position	[]
a. Equilibrium Position	n	b. Extreme Position			
c. Intermediate Positio	n	d. Cannot be predicte	d		
20. As the particle executing f	free oscillations, displ	aces from the mean po	sition, the total	energy	
18				1]
a. Increases	b. Decreases	c.Remains Constant	d.None of the	above	-
21. The Energy stored in a cap $1/2 L L^2$	pactor charged to vol	tage V =	1	L]
a. 1/2 LI	0.1/2 CV	C. 1/2 LV	d. None	г	ч
22. The energy of the particle π				L]
a. $T = -\frac{1}{2}\pi na^2m$	b. $T = 2ma^2$	$c. T = 2\pi^2 n^2 a^2 m$	d. None		
23. The impedance of mechan	ical oscillator is given	n by =		[]
a. $\sqrt{b^2 - \left[\frac{k}{\omega} - \omega m\right]^2}$	b. $\sqrt{b^2 + \left[\frac{k}{\omega} + \omega m\right]^2}$	c. $\sqrt{b^{2} + \left[\frac{k}{\omega} - \omega m\right]^{2}}$	d. None		
24. The Energy stored in a Ca	pacitor			[]
a. Magnetic Energy		b. Electrostatic Energ	y		
c. Both Magnetic and	Electrostatic Energy	d. None			
25. The Energy stored in a Inc	luctor			[]
a. Magnetic Energy		b. Electrostatic Energ	У		
c. Both Magnetic and	Electrostatic Energy	d. None			
26. The frequency of the elect	rical oscillator is give	n directly by		[]
a. $n = \frac{1}{2\pi\sqrt{LC}}$	b. $n = \frac{1}{\sqrt{LC}}$	c. $n = \frac{2\pi}{\sqrt{LC}}$	d. None		
27. Resisting force is pr	oportional to the velo	city		[]
a. Directly	b. Inversely	c. Exponential	d. None		

28. Resisting force and veloc	ity act in the <u> </u>	ion		[]
a. Opposite	b. Same	c. Perpendicular	d. None of the	above	
29. If a particle vibrates unde	r damped oscillations,	the amplitude of oscill	lation is	[]
a. Remains same		b. Increased with time	e		
c.Decreased with time	e	d. None			
30. $b^2 < \omega^2$ is the condition fo	r vibrations			[]
a. Under damped mot	ion	b. Over damped			
c. Critical damped mo	otion	d. None of the above			
31. $b^2 > \omega^2$ is the condition fo	r vibrations			[]
a. Under damped mot	ion	b. Over damped moti	on		
c. Critical damped mo	otion	d. None of the above			
32. $b^2 = \omega^2$ is the condition for	or vibrations			[]
a. Under damped mot	ion	b. Over damped moti	on		
c. Critical damped mo	otion	d. None of the above			
33. Mechanical resistance is	independent of the	of the applie	d force.	[]
a. Amplitude	b. Frequency	c. Phase	d. None		
34. The mechanical equivalent	nt of charge is			[]
a. Displacement	b. Acceleration	c. Velocity	d. None of the	above	
35. A Spring fitted to a doc	or to return it to its c	losed position after it	has been open	ed, is a	an
example for		-	-	[]
a. Light damping	b.heavy damping	c. critical damping	d. none		
36. The mechanical equivalent	nt of current is			[]
a. Acceleration	b. Rate of change of c	current c. Velocity	d. None of the	se	
37. The quality factor of a da	mped mechanical osci	llator is given by		[]
a. $Q = \frac{\omega_0}{\gamma}$	b. $Q = \frac{1}{\gamma}$	C. $Q = \frac{\gamma}{\omega_0}$	d. none		
38. The frequency of the med	hanical oscillator is gi	ven directly by n =		[1
$1 \sqrt{k}$	$1 1 \overline{m}$	$\frac{1}{k}$	1	-	-
a. $\frac{1}{2\pi}\sqrt{\frac{n}{m}}$	b. $\frac{1}{2\pi}\sqrt{\frac{m}{k}}$	C. $2\pi\sqrt{\frac{\kappa}{m}}$	d. none		
39. The electrical equivalent	of mass is			[]
a. Capacitance	b. Resistance	c. Inductance	d. None of the	se	
40. The electrical equivalent	of force constant is			[]
a. Capacitance		b. Reciprocal of capa	citance		
c. Inductance		d. Reciprocal of indu	ctance		
41. Electrical impedance in L	CR series circuit is the	e collective opposition	offered to flow	of	
current by, capacit	or and resistor			[]
a. Diode	b. Transistor	c. Inductor	d. None of the	se	
42. Electrical resistance is ind	lependent of the	_of the applied field		[]
a. Amplitude	b. Frequency	c. Magnitude	d. None of the	se	
43. The Total energy in SHM	[[]
a. increases	b. decreases	c. Remains constant	d. none		

44. The Phase different ϕ between emf and current in an electrical oscillator is given by $tan\phi =$

]

[

a. $\frac{\left[\frac{1}{\omega C} - \omega L\right]}{R}$	b. $\frac{\left[\frac{1}{\omega C} + \omega L\right]}{R}$	C. $\frac{\left[\frac{1}{\omega L} - \omega C\right]}{R}$	d. $\left[\frac{1}{\omega C} - \omega L\right]$	
45. The Phase different in m	echanical oscillator is g	given by $tan \varphi =$	[]
a. $\frac{\left[\frac{k}{\omega m} - \omega\right]}{b}$	b. $\frac{\left[\frac{k}{\omega} - \omega m\right]}{b}$	C. $\frac{\left[\frac{k}{\omega} + \omega m\right]}{b}$	d. $\left[\frac{k}{\omega} - \omega m\right]$	
46electric field is appl	ied in LCR series resor	nant circuit.		[]
a. AC	b. DC	c. AC &DC	d. None of the	Above
47. Potential energy of a part	ticle executing S.H.M i	s minimum at	position	[]
a. Equilibrium positio	on	b. Extreme position		
c. Intermediate positi	on	d. Cannot be predicte	d	
48. The amplitude of a body	executing Free oscillat	ions with time	e	[]
a. Increases	b. Decreases	c. Remains constant	d. None of the	above
49. Velocity of the particle e	xecuting S.H.M is zero	at position	n	[]
a. Equilibrium positio	on	b. Extreme position		
c. Intermediate positi	on	d. Cannot be predicte	d	
50. Total Energy of an electr	ical harmonic Oscillato	or given by E=		[]
a. $1/2 [LI^2 - CV^2]$	b. $1/2 [CV^2 - LI^2]$	c. $1/2 [LI^2 + CV^2]$	d. both a & b	
51. Which among the fo	ollowing magnetic m	aterials are usually	capable of e	xhibiting
magnetostriction effect?				[]
a. Dia	b. Para	c. Ferro	d. none of the	above
52. Which of the following s	tatements is true?			[]
a. Ultrasonic waves h	ave the frequency rang	ging from 20 Hz to 20	KHz	
b. Bats can sense the	ultrasonic waves			
c. Human ear is sensi	tive to ultrasonic wave	;		
d. Ultrasonic waves a	re low – frequency wa	ves.		
53. Ultrasonic waves are det	ected by			[]
a. Telephone	b. Quincle's method	c. Kundt's method	d. Hebbe's me	ethod
54. Ultrasonic waves can be	sensed by			[]
a. Human beings	b. Dogs	c. both (a) and (b)	d. none of thes	se
55. The principle used for the	e production of ultraso	nic waves is		[]
a. photoelectric effec	t	b. Inverse piezoelectr	ic effect	
c. Hall effect		d. Compton effect		
56. In the Kundt's tube meth	od, powder is used	to detect the ultrasonic	S	[]
a. Face powder	b. Lycopodium	c. Phosphorous	d. all of the ab	ove
57. In the hexagonal base o	f the quartz crystal the	e imaginary lines join	ing the opposit	e corners
form axes.		_		[]
a. X	b. Y	c. Z	d. none of thes	se

 58. In ultrasound scanning (sonography) a piezoelectric material is used to a. Convert electric energy to mechanical energy b. Convert mechanical energy to electrical energy 				
d. None of the above				
59 The smallest distance between two points on a wave where the particles are in the sa	me state			
of motion is	Ine state	1		
a. Period b. wavelength c. frequency d. hypotenuse	L	L		
60. The fundamental frequency of a piezoelectric crystal used in ultrasonics is a function	of:			
	[]		
a. Its thickness b. Its density c. both a and b d. None of the	e above			
61. Particle motion in a longitudinal wave is	[1		
a. Parallel to the direction of wave propagation				
b. At right angles to the direction of wave propagation				
c. Retrograde				
d. In counterclockwise ellipses				
62. Waves used in ultrasonic testing of materials are in nature.	[]		
a. mechanical b. magnetic c. electromagnetic d. harmonious	S			
63. Ultrasonic methods of testing is used to find	[]		
a. Cracks b. Voids c. Foreign material inclusions d. All above				
64. The defects in welded, casted, and forged materials can be detected without spoiling	them by	/		
of materials	[]		
a. Destructive testing b. Magnetostrictive testing				
c. Non-destructive testing d. All of the above				
65. Which one from the following is a correct characteristic of ultrasonic waves?	[]		
a. Ultrasonics are sound waves of very long wavelength				
b. Ultrasonics are sound waves of very high frequency				
c. Ultrasonic waves are audible				
d. Ultrasonic waves are absorbed by the sea water				
66. Ultrasonic waves cannot be produced by	[]		
a. Radio frequency oscillator with diaphragm loudspeaker				
b. Radio frequency oscillator with quartz crystal				
c. Radio frequency oscillator with nickel rod				
d. All of the above				
67. The piezoelectric phenomenon is observed in a	[]		
a. Nickel rod b. NaCl crystal c. Quartz crystal d. Iron rod				
68. As an ultrasound pulse moves through tissue in a patient's body it will undergo a cha	nge in:			
	[]		
a. Frequency and velocity b. Amplitude c. Intensity d. Both b and	с			

69. Magnetostriction ultrasonic generators are generally used at]
a. Lower frequencies for higher power outputs					
b. Higher frequencies	for higher power ou	tputs			
c. Lower frequencies	for lower power output	ıts			
d. Higher frequencies	for lower power outp	uts			
70. A magnetostriction oscill	ator needs			[1
a. An oscillator		b. A current amplifie	r		
c. A magnetostriction	coil	d. All of the above			
71. Magnetostriction effect is	s used for producing			[]
a. Electric field	1 0	b. Ultrasonic waves			
c. Change in temp. of	a magnetic material	d. None of these			
72 Metal is used i	n Thermal detector me	ethod of detecting the	ultrasonics.	[1
a. Gold	b. Silver	c. Copper	d. Platinum	-	_
73. An Ultrasonic wave is ba	sically			[1
a. A magnetic wave	-	b. An electromagnet	ic wave		
c. An inaudible sound	1	d. A heat wave			
74. The branch of physics, w	hich deals with the pro	ocess of generation, pr	opagation and re	eception	1
of sound in a room or an aud	itorium, is called		1 0	[]
a. Acoustics	b. Fiber Optics	c. Statistics	d. Ultrasonics		
75. The prolongation of soun	d inside a room or hal	l even after the source	producing the s	ound is	
turned off is called				[]
a. Reverberation	b. Aberration	c. Reverberation time	e d. Optics		
76. Reverberation time is the	time required for the	intensity to drop by	decibel	[]
a. 60	b. 30	c. 50	d. 100		
77 .Ratio of the sound energ	y absorbed by the surf	face area to the sound of	energy absorbed	by uni	t
area of an open window is ca	lled			[]
a. Absorption coeffic	ient	b. Einstein coefficier	nt		
c. Thermal coefficien	t	d. Hall coefficient			
78. Reverberation time must	be			[]
a. Optimum	b. Minimum	c. Maximum	d. All the three	e	
79. Absorption coefficient of	fall substances is meas	sured in terms of		[]
a. Open Window Uni	t (OWU)	b. Arbitrary unit			
c. Both		d. None			
80. The prevention of the tran	nsmission of noise insi	ide or outside the hall	is known as	[]
a. Sound insulation	b. Sound proofing	c. (a) or (b)	d. Bullet proof	fing	
81. Covering the long distant	t walls and high ceiling	g with absorbent mater	rial is the remed	y for	
				[]
a. Echo	b. Echelon effect	c. Resonance	d. None of the	se	
82. The reverberation time sh	nould befor music			[]
a. 1-2 second	b. 5 second	c. 10 second	d. All these		

83. The reverberation time should be for spe	ech		[]
a. 0.5 to 1 second b. 1000 second	c. 100 second	d. 10 second		
84. Study of behaviour of sound waves in a closed	space is called		[]
a. Acoustics quieting	b. Acoustics of buildi	ng		
c. Both a & b	d. reverberation			
85. If the hall to be acoustically good, the hall must	st be		[]
a. Empty	b. Half of the audience	e		
c. Full of audience	d. Both A&B			
86. There should be no within the building	ng to have a clear sound		[]
a. Curtains b. furniture	c. resonance	d. None of the	se	
87. There should be noin auditorium to avo	id interference of sound		[]
a. Carpet b. Furniture	c. Echelon effect	d. None of the	se	
88is the time required for the intensity to dro	op to one millionth (10^{-6})	⁵) of its initial v	alue	
			[]
a. Reverberation	b. Absorption Coeffic	cient		
c. Reverberation time	d. Loudness			
89. Sabine formula			[]
a. $T = 0.0165 V/A$ b. $T = 0.165 V/A$	c. $T = 0.00165 V/A$	d. $T = 1.65 V/A$	A	
90. There is overlapping of successive sounds if the	ne reverberation time is		[]
a. Very Small b. Medium	c. Large	d. None of the	se	
91. If the reverberation time isthe sound ener	rgy cannot reach the end	l of the auditori	um	
			[]
a. Large b. 165 Sec	c. Small	d. None		
92. A set of railings or any regular spacing of refle	ecting surfaces may proc	duce a musical i	note due	Э
to the regular succession of echoes of the original	sound is called		[]
a. Noise b. Loudness	c. Echelon effect	d. None of the	above	
93. To have good sound effect inside a hall			[]
a. The reverberation time has to be as large	e as possible			
b. The reverberation time has to be zero				
c. The hall should not have any sound abso	orbing material			
d. The reverberation time has to be optimu	m			
94. The walls of a halls built for music concerns s	should		[]
a. Amplify sound	b. Reflect sound			
c. Transmit sound	d. Absorb sound			
95. Which one of the following has minimum abso	orption coefficient		[]
a. Glass b. Felt	c. Open window	d. Wooden Flo	or	
96. The reverberation time is	-		[]
a. Proportional to volume	b. Proportional to are	a		-
c. Inversely Proportional to Volume	d. None			
• I				

97. The reverberation time can be controlled]
a. Decorating the walls by picture & maps					
b. Using heavy curta	ins with folds				
c. Covering the floor	with carpets				
d. All the above				_	_
98. To absorb the sound in a	hall which of the folle	owing are used		[]
a. Glasses, stores		b. Carpets, curtains			
c. Polished surfaces		d. None		-	
99. Sound waves with freque	encies above 20 kHz a	ire called	1.57	L]
a. Ultrasonics	b. Supersonics	c. Audible	d. None	-	
100. Wavelength of ultrason	inc waves is			L]
a. More than audible	sound	b. Less than audible	e sound		
c. Equal to audible s	sound	d. none		r	
101. Coherence in lasers is c	lue to			L]
a. Spontaneous emis	sion	b. Stimulated emiss	ion		
c. Population inversi	on	d. non thermal equil	librium	r	-
102. Population inversion m	eans that			L]
a. Maintaining more	number of atoms in hi	igner energy levels			
b. Maintaining more	number of atoms in th	e ground level	.1 1 .		
c. Maintaining more	number of atoms in th	e meta stable state tha	in the ground sta	te.	
d. Maintaining more	number of atoms in th	le laser transition level	ls.	1 /	
103. Emission of photon wh	en electron jumps fror	n higher energy to low	ver energy state of	Jue to	1
a Spontaneous emis				L	1
a. Spontaneous enns	eion	h Stimulated amice	ion		
c Induced emission	sion	b. Stimulated emiss	ion		
c. Induced emission	sion	b. Stimulated emiss d. Amplified emissi ticle is more is known	ion on	ſ	1
c. Induced emission 104. The energy level in wh	ich life time of the par	b. Stimulated emiss d. Amplified emissi ticle is more is known	on as d none	[]
c. Induced emission 104. The energy level in wh a. Excited state	ich life time of the par b. Metastable state	 b. Stimulated emiss d. Amplified emissi ticle is more is known c. Both idely used in Ophthali 	ion on as d. none mology?	[r]
c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a Ruby laser	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser	 b. Stimulated emiss d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser 	on as d. none nology? d. CO2 laser	[]
c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th	 b. Stimulated emiss d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order 	on as d. none nology? d. CO ₂ laser	[[]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a 1:10 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b 1:1	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order c. 10:1 	on as d. none nology? d. CO ₂ laser d. 100:1	[[]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order c. 10:1 	on as d. none nology? d. CO ₂ laser d. 100:1	[[[]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order c. 10:1 er is c. Red 	ion on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow	[[[]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 108. Measurement of variati 	 ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la 	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthaln c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance 	on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter	[[[mine]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthaln c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance 	on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter	[[[rmine]]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation a. Coherence 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la b. Coherence	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance c. Directionality 	on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter d. Brightness	[[[rmine []]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation a. Coherence 109. Coherence of light is maginal particular p	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la b. Coherence	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthaln c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance c. Directionality 	on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter d. Brightness	[[[rmine []]]]
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following la a. Ruby laser 106. In He-Ne Laser, the rat a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation a. Coherence 109. Coherence of light is m a. Variation in spot s 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la b. Coherence heasured from ize with distance	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthaln c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance c. Directionality b. visibility of interf 	ion on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter d. Brightness	[[[:mine [:produ]]]] cces
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following late a. Ruby laser 106. In He-Ne Laser, the rate a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation a. Coherence 109. Coherence of light is m a. Variation in spot s c. Brightness of the b 	 ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la b. Coherence beasured from ize with distance beam 	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthali c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance c. Directionality b. visibility of interface d. wavelength of the 	ion on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter d. Brightness ference fringes it	[[cmine [; produ]]]] ces
 c. Induced emission 104. The energy level in wh a. Excited state 105. Among the following late a. Ruby laser 106. In He-Ne Laser, the rate a. 1:10 107. The colour of the laser a. Green 108. Measurement of variation a. Coherence 109. Coherence of light is m a. Variation in spot s c. Brightness of the b 	ich life time of the par b. Metastable state asers, which laser is w b. Argon ion laser io of of He-Ne is in th b. 1:1 output from Ruby lase b. Blue on of divergence of la b. Coherence leasured from ize with distance beam f population inversion	 b. Stimulated emissi d. Amplified emissi ticle is more is known c. Both idely used in Ophthaln c. Nd YAG laser e order c. 10:1 er is c. Red ser beam with distance c. Directionality b. visibility of interf d. wavelength of the by optical pumping is 	ion on as d. none nology? d. CO ₂ laser d. 100:1 d. Yellow e is used to deter d. Brightness ference fringes it	[[[:rmine [: produ]]]] ces

111. The wavelength of emis	sion from He-Ne laser	is	[]
a. 6328Å	b. 6943Å	c. 3371Å	d. 1024Å	
112. In the following which	energy is suitable for p	pumping	[]
a. Electrical	b. Optical	c. Chemical	d. All the above	
113. Laser radiation is			[]
a. Monochromatic	b. highly directional	c.coherent, stimulated	d d. All the above	
114. Population inversion ca	nnot be achieved by		[]
a. Chemical reaction	b. thermal process	c. electric discharge	d. optical pumping	
115. He-Ne gas laser is			[]
a. Pulsed	b. Continuous	c. Semiconductor las	er d. None	
116. In ruby lasing material t	the percentage of Cr3+	ions in Al2O3 is	[]
a. 0.05	b. 0.5	c. 5	d. 0.005	
117. In meta stable state, the	life time of atoms is of	f the order	[]
a. 10-8 sec	b. 10 sec	c. 10-3 sec	d. 10-14 sec	
118. In He-Ne laser	atoms involved in laser	r emission are	[]
a. Ne atoms	b. He atoms	c. Both	d. None	
119. The source of excitation	n in He-Ne gas laser is		[]
a. Xenon flash lamp		b. Optical Pumping		
c. Direction conversion	on	d. Electrical discharg	e	
120. Ruby laser emits light o	f wavelength		[]
a. 6943Å	b. 6328Å	c. 8628 Å	d. 8370 Å	
121. Ruby laser is example f	or level schem	e	[]
a. 4	b. 3	c. 5	d. None	
122. According to Boltzmann	n distribution law		[]
a. N _i = $g_i N_0 \exp(E_i/K)$	T)	b. $N_i = g_i N_0 exp(-E_i/K)$	(T)	
c. N _i = $(N_0/g_i)exp(E_i/$	KT)	d. N _i = $(N_0/g_i)exp(-E_i)$	j/KT)	
123. Laser beam does not ha	ve the property of		[]
a. Monochromacity	b. Coherence	c. Divergence	d. Directionality	
124. Laser output beam of R	uby Laser is		[]
a. Continuous	b. Pulsed	c. Both	d. None	
125. Which of the following	are required for produ-	cing LASER?	[]
a. Excitation source	b. Active medium	c. LASER cavity	d. All the above	

Signature of the HOD (Physics)